
Ensuring Consistency between Designs, Documentation,
Formal Specifications, and Implementations

Joseph R. Kiniry and Fintan Fairmichael

School of Computer Science and Informatics and
CASL: The Complex & Adaptive Systems Laboratory,
University College Dublin,Belfield, Dublin 4, Ireland

kiniry@acm.org and fintan.fairmichael@ucd.ie

Abstract. Software engineering experts and textbooks insist that all of the artifacts related to a system,
(e.g., its design, documentation, and implementation), must be kept in-sync. Unfortunately, in the real
world, it is a very rare case that any two of these are kept consistent, let alone all three. In general,
as an implementation changes, its source code documentation, like that of Javadoc, is only occasion-
ally updated at some later date. Unsurprisingly, most design documents, like those written in UML,
are created as a read-only medium—they reflect what the designers thought they were building at one
point in the past, but have little to do with the actual running system. Even those using formal methods
make this mistake, sometimes updating an implementation and forgetting to make some subtle change
to a related specification. The critical problem inherent in this approach is that abstraction levels, while
theoretically inter-dependent, are actually completely independent in semantics and from the point of
view of the tools in pervasive use. Entities in different layers have no formal relationship; at best, in-
formal relations are maintained by ad hoc approaches like code markers, or code is generated once and
never touched again. This paper presents a new approach to system design, documentation, implemen-
tation, specification, and verification that imposes a formal refinement relationship between abstraction
levels that is invisible to the programmer and automatically maintained by an integrated set of tools.
The new concept that enables this approach is called a semantic property, and their use is discussed
in detail with a set of examples using the high-level specification language EBON, the detailed design
and specification language JML, and the Java programming language as the implementation language.

1 Introduction

Ad hoc constructs and local conventions have been used to annotate program code since the invention of
programming languages. The purpose of these annotations is to convey “extra” programmer knowledge to
other system developers and future maintainers. These comments usually fall into that grey region between
completely unstructured natural language and formal specification. For example, an ad hoc convention
promoted by Eclipse are the FIXME, TODO, and XXX task tags that cause errors or warnings to appear in
Eclipse’s Problems view.

Invariably, such program comments rapidly exhibit “bit rot”. Over time, these comments and the im-
plementation to which they refer diverge to an inconsistent state (a process often referred to as erosion or
drift [1]). Unless they are well maintained by documentation specialists, rigorous process, or other extra-
mile development efforts, they quickly become out-of-date. They are the focus for the software engineering
mantra: an incorrect comment is worse than no comment at all.

Recently, with the adoption and popularization of lightweight documentation tools in the literate pro-
gramming tradition [2,3], an ecology of semi-structured comments is flourishing. The rapid adoption and
popularity of Java primed interest in semi-structured comment use via the Javadoc tool. Other similar
code-to-documentation transformation tools have since followed in volume, including Jakarta’s Alexan-
dria, Doxygen, and Apple’s HeaderDoc. SourceForge reports dozens of projects with “Javadoc” in the
project summary, and FreshMeat reports several dozen more, with some overlap.

While most of these systems are significantly simpler than Knuth and Levy’s original CWEB, they
share two key features.

Firstly, they are easy to learn, since they necessitate only a small change in convention and process.
Rather than forcing the programmer to learn a new language, complex tool, or imposing some other signif-
icant barrier to use, these tools actually reward the programmer for documenting their code.

http://www.sf.net/
http://www.freshmeat.net/

Secondly, a culture of documentation is engendered. Prompted by the example of vendors like Sun, pro-
grammers enjoy (or, at least, do not abhor) the creation and use of the attractive automatically-generated
documentation in a web page format. This documentation-centric style is only strengthened by the exhibi-
tionist nature of the Web. Having the most complete documentation is now a point of pride in some Open
Source projects—a state of affairs unguessable a decade ago.

The primary problem with these systems, and the documentation and code written using them, is that
even semi-structured comments have no semantics. Programmers are attempting to state (sometimes quite
complex) knowledge, but are not given the language and tools with which to communicate this knowledge.
And since the vast majority of developers are unwilling to learn a new, especially formal, language with
which to convey such information, a happy-medium of informal formality is necessary.

That compromise, the delicate balance between informality and formality, is the core principle behind
semantic properties, the core conceptual contribution of this paper.

Informally, semantic properties are nothing more than what today’s programmers call annotations, and
what are known as pragmas in the non-OO world. Javadoc tags, gcc’s #defines, and C#’s XML com-
ments are three examples of (potential) semantic properties. Of course, none of these specific technologies
were created with semantic properties in mind—support for them is engineered into the design of semantic
properties. This decision is taken to ensure that programmers do not need to learn new technologies or
languages to use and take advantage of semantic properties.

More formally, semantic properties are general-purpose annotations that have a domain-independent
formal semantics. For a given domain (e.g., a programming or specification language), semantic properties’
semantics are mapped into the semantic domain of their application via a refinement relation. These refine-
ment relations are semantics preserving—they are defined in such a way that their meaning is preserved
between refinement levels.

As mentioned earlier, semantic properties look just like comments, annotations, or design notes—they
are used as if they were normal semi-structured documentation. But, rather than being ignored by compilers
and development environments as comments typically are, they have the attention of augmented versions
of such tools. Semantic properties permit one to embed a tremendous amount of concise information wher-
ever they are used without imposing the often insurmountable overhead seen in the introduction of new
languages and formalisms for similar purposes.

Semantic properties are not a newly-invented idea. They have been used in several research groups, in
the classroom, as well as in corporate settings for over a decade. We are now using them also in a software
product lines setting. Over the years, semantic properties, via its underlying logic, called kind theory, have
integrated several formal methods in practical, pragmatic fashion, unbeknownst to collaborators, students,
and employees. In the following pages several examples of semantic properties are described. We will focus
this explanation via the use of a concrete example.

2 Running Example

Our running example comes from an advanced tutorial on JML from 2006 [4]. The focus of that tutorial
is the detailed specification and verification of an alarm clock using the Java Modeling Language (JML)
and Java. The refinement relationship between JML and Java in this example is depicted diagrammatically
in Figure 1. We extend this example to include high-level specifications written in the Extended Business
Object Notation language (EBON), for which we are responsible. BON is a textual and graphical domain-
independent specification language akin to UML [5], but which focuses on all software engineering stages
from domain analysis to architecture to contract-centric component design. EBON is simply the BON
language plus semantic properties.

To illustrate the use of semantic properties in more detail, consider the task of modeling a logical clock,
like those used in concurrent and distributed algorithms.

The first stage of our verification-centric software development process involves concept identification.
(A full description of this process is found elsewhere [6].) Concepts, called classes (as in classifiers) in
EBON, are named, described with single sentences, and their high-level relations (is-a, has-a, and is-a-
kind-of) are identified.

class_chart LOGICAL_CLOCK

explanation

 "A logical clock."

query

 "What is the current time for this clock?"

command

 "Advance the clock; update the clock's time."

constraint

 "The time must be non-negative.",

 "Must support concurrent use by multiple clients."

end

indexing

 about: "A logical clock.";

 title: "TickTockClock";

 author: "Joe Kiniry";

 copyright: "Copyright (C) 2007 Joe Kiniry";

 organisation: "School of Computer Science and Informatics, UCD";

 date: "January 2007";

 version: "Revision: 11";

static_diagram

component

 deferred class LOGICAL_CLOCK

 feature

 my_time: INTEGER -- The current time of this clock.

 -- What is the current time of this clock?

 deferred get_logical_time: INTEGER

 -- concurrency: CONCURRENT

 -- modifies: QUERY

 ensure

 Result = my_time;

 end

 deferred advance -- Advance this clock's time.

 -- concurrency: GUARDED

 -- modifies: my_time

 ensure

 -- This clock's time has monotonically increased.

 old my_time < my_time;

 end

 invariant

 0 <= my_time;

 end -- class LOGICAL_CLOCK

end --component

/**

 * A logical clock.

 * @title "TickTockClock"

 * @date "2007/01/23 18:00:49"

 * @author "Fintan Fairmichael"

 * @organisation "CSI School, UCD"

 * @copyright "Copyright (C) 2007 UCD"

 * @version "$ Revision: 1.7 $"

 */

public interface LogicalClock {

 // The current time of this clock.

 //@ public model instance \bigint _time;

 //@ public invariant 0 <= _time;

 /**

 * @return What is the current time of this clock?

 * @concurrency CONCURRENT

 */

 //@ ensures \result == _time;

 public /*@ pure @*/ long getLogicalTime();

 /**

 * Advance this clock's time.

 * @concurrency GUARDED

 */

 //@ assignable _time;

 //@ ensures \old(_time) < _time;

 //@ ensures (* _time has been increased. *);

 public void advance();

}

/**

 * A logical clock implementation.

 * @author "Joseph Kiniry"

 */

public class LogicalClockImpl implements LogicalClock {

 /** The current logical time. */

 private long my_time = 0; //@ in _time;

 //@ private represents _time <- my_time;

 public long getLogicalTime() {

 return my_time;

 }

 public void advance() {

 my_time++;

 }

}

Informal EBON

Formal EBON
JML

Java

Figure 1: A diagrammatic representation of refinement from EBON to Java.

static_diagram CONCEPTS_AND_RELATIONS
component
deferred class LOGICAL_CLOCK
deferred class ALARM
effective class CLOCK persistent
effective class ALARM_CLOCK persistent

ALARM_CLOCK inherit CLOCK
ALARM_CLOCK inherit ALARM

end

Listing 1: An EBON static diagram describing the core concepts of the running example.

In this example, the concepts identified through domain analysis are alarm, alarm clock, and logical
clock. Their relationships are summarized in the EBON static diagram CONCEPTS AND RELATIONS in
Listing 1. Their definitions are elided in this example.

Each concept is summarized with an informal diagram. An informal diagram describes the concept
and its interfaces in terms of queries, commands, and constraints. Queries and commands are collectively
known as features.

For example, the logical clock must store a time value and, in EBON terminology, support a query to
determine the current time stored in the clock. A command is also necessary to monotonically advance
the time stored in the clock. Furthermore, a constraint states that the time stored in the clock is always
non-negative. Finally, the logical clock must also behave correctly while being used by multiple concurrent
clients.

class_chart LOGICAL_CLOCK
explanation
"A logical clock."

query
"What is the current time of this clock?"

command
"Advance the clock; update the clock’s time."

constraint
"The time must be non-negative.",
"Must support concurrent use by multiple clients."

end

Listing 2: An EBON class chart for LOGICAL CLOCK.

This interface and requirements are expressed using an EBON informal chart. Like most requirement
languages, informal EBON uses structured English to denote analysis concepts and requirements. The
EBON class chart shown in Listing 2 captures this information.

Classical software engineering requirements are expressed as constraints in EBON. Likewise, features
(as in formal feature models from the area of software product lines [7]) are expressed via EBON features.

indexing
about: "A logical clock.";
title: "TickTockClock";
author: "Joe Kiniry";
copyright: "Copyright (C) 2008 Joe Kiniry";
organisation: "School of Computer Science and Informatics, UCD";
date: "January 2008";
version: "Revision: 11";

static_diagram
component

deferred class LOGICAL_CLOCK

feature
my_time: INTEGER -- The current time of this clock.

-- What is the current time of this clock?
deferred get_logical_time: INTEGER
-- concurrency: CONCURRENT
-- modifies: QUERY
ensure

Result = my_time;
end

deferred advance -- Advance the clock; update the clock’s time.
-- concurrency: GUARDED
-- modifies: my_time
ensure

-- This clock’s time has monotonically increased.
old my_time < my_time;

end

invariant
my_time >= 0; -- The time must be non-negative.

end -- class LOGICAL_CLOCK

end --component

Listing 3: An EBON formal specification for LOGICAL CLOCK.

This model is refined, mapping informal specifications into something more formal and concrete, as
seen in Listing 3. For example, the constraint “The time must be non-negative.” is refined to an invariant of
the form: my time ≤ 0. A feature time of type INTEGER is defined that represents the current time of this
clock. The clock’s query and command are also refined into appropriate features (function types). Also,
note that the concept “time” is refined to a property having the EBON type INTEGER, a mathematical
integer.

This diagram contains uses of two semantic properties, one called concurrency and the other modifies.
In order to achieve our desired concurrency property, the informal constraint is refined by annotating the
features with the concurrency semantic property whose labels denote the concurrency semantics of their
feature. The query get logical time is labelled CONCURRENT (multiple calls may proceed at the
same time), and the command advance as concurrency GUARDED (additional calls block until the original
call has completed). This specification models a standard multiple reader, single writer pattern.

Additionally, a frame condition is stated for these two features. Frame conditions specify what parts
of the model may be changed when a function is invoked. These two annotations make explicit that the
function get logical time is indeed a QUERY, and the function advance may only modify the value
of the field my time.

For the reader familiar with JML, this formal specification of LOGICAL CLOCK looks syntactically
familiar. A JML refinement of this EBON class is found in Listing 4.

A JML specification is a JML-annotated Java module (a class or an interface). LogicalClock.java
contains a Javadoc-annotated Java interface which contains two methods. Each method is, in turn, also an-
notated with Javadoc comments. Some of the Javadoc tags are standard (e.g., @return and @author),

/**
* A logical clock. This realization uses a integral representation,

* rather than a continuous one.

* @title "TickTockClock"

* @date "2009/01/23 18:00:49"

* @author "Fintan Fairmichael"

* @organisation "CSI School, UCD"

* @copyright "Copyright (C) 2009 UCD"

* @version "$ Revision: 1.7 $"

*/
public interface LogicalClock {

// The current time of this clock.
//@ public model instance \bigint _time;

//@ public invariant (* The time must be non-negative. *);
//@ public invariant 0 <= _time;

/**
* @return What is the current time of this clock?

* @concurrency CONCURRENT

*/
//@ ensures \result == _time;
public /*@ pure @*/ long getLogicalTime();

/**
* Advance the clock; update the clock’s time.

* Note that time may increase by more than one.

* @concurrency GUARDED

*/
//@ assignable _time;
//@ ensures \old(_time) < _time;
//@ ensures (* _time has been increased. *);
public void advance();

}

Listing 4: A JML formal specification of the EBON class LOGICAL CLOCK.

and others are not. All of the tags, standard and non-standard (title, date, organisation, copyright,
version, and the aforementioned concurrency), are all semantic properties.

The JML specification also contains, of course, JML annotations. In this particular case, these annota-
tions capture the formal meaning of the idea of a logical clock, as embodied by this Java type. In particular,
a model (specification-only) field called time of type \bigint (the type representing mathematical
integers, i.e., Z) is defined, complemented by an invariant stating that the value of that field is always
non-negative.

Furthermore, both methods have contracts. The contract getLogicalTime states that the value re-
turned by the method is always identical to that held in the model field time. The contract for advance
states that the method may only change the value of the model field time (and nothing else) and that
calling this method causes time to move monotonically forward, as embodied by the formal postcondi-
tion \old(time) > time (the new value of time is strictly greater than its old value before the
call). The informal postcondition, contained in the JML comment block (* ... *), reminds us of the
meaning of its sister specification.

One possible implementation of this type is in Listing 5. Time is represented by a long field that
refines the corresponding model field in the JML specification. This means that the invariants of the model
field apply to the concrete one through the refinement, as denoted by the represents clause, where the
arrow denotes functional data refinement.

2.1 Modifications

We will now consider some short examples of ways that we could modify our example, causing the design
and implementation to become inconsistent.

One oft-performed change is renaming a class or feature in a system. If we were to perform a rename at
one abstraction-level of our system the other levels will not be in-sync, with regards to naming. This is of
course easily remedied by performing a renaming on the related artifacts over all levels. Note that the real

/**
* A logical clock implementation.

* @author "Joseph Kiniry"

*/
public class LogicalClockImpl implements LogicalClock {

/** The current logical time. */
private long my_time = 0; //@ in _time;
//@ private represents _time <- my_time;

public synchronized long getLogicalTime() {
return my_time;

}

public void advance() {
my_time++;

}
}

Listing 5: A Java implementation of the EBON class LOGICAL CLOCK.

name of an entity is independent of a particular naming style. For instance the names LOGICAL CLOCK
(Eiffel style) and LogicalClock (Java style) are equivalent. Naming styles can easily be applied or
removed when mapping to or from particular domains.

Another interesting change to our system would be to modify the advance feature of the logical clock
to take an integer argument, a measure of the amount with which to increase the time. This change might in-
volve adding an argument of type int to the advancemethod signature in the LogicalClock interface
and LogicalClockImpl class, as well as adding a parameter of type INTEGER to the LOGICAL CLOCK
formal model. The postcondition must also be changed to reflect that the time has increased by the pro-
vided amount, but we will ignore this for the moment. Again, if we make the change at one refinement
level, the levels will become inconsistent. To maintain consistency the relevant changes must be made at
all levels that detail the parameters for the advance feature. Thus, the signature of the advance feature
in the formal EBON specification changes from deferred advance to deferred advance ->
INTEGER.

Consider the case where the postcondition of the advance feature/method is to be strengthened, such
that the time cannot increase by more than 100 from its old value. As a JML ensures clause, one might
write this as time-\old(time)<=100. Once more, a change to the system at one level (JML specifi-
cation) causes other levels to become inconsistent. The required change to the formal EBON model is the
addition of the ensure clause my time-old my time<=100.

There are a many more changes that could be made to our example that require modifications on
other abstraction levels to maintain consistency. The levels affected can be above and/or below the original
modification’s level. There are also changes that do not affect other levels, for instance a change to the
author property.

3 Subtleties of Refinement

There are a number of subtleties to examine in this simple example. They relate to the support for inheri-
tance and structure in the refinement semantics of semantic properties.

3.1 Inheritance

First, note that the implementation contains far less documentation that the previous examples. For exam-
ple, there is no denotation of project or version particulars, and methods do not have comments or contract
clauses. This is the case because many semantic properties have a semantics for inheritance. Thus, some
of the semantic properties that annotate the higher-level specifications, like the Javadoc comments in the
LogicalClock interface or those in the EBON formal specification, are automatically inherited by their
children. The realization of a semantics for inheritance is sometimes quite simple and other times is not.
Regardless, it is always concretely shown to the user in a simple fashion.

For example, compare the comments on the feature advance in the JML and EBON formal specifica-
tions, or the class comments in both specifications. The content of the EBON annotation is exactly the first
sentence of the content of the JML annotation. The inheritance semantics of natural language comments
(which are simply semantic properties with no tag) is structural in nature and relies upon the structure of
natural language.

Other documentation refinements are subtle. For example, notice that the annotation on a query in
formal EBON maps to the @return annotation in Java. Likewise, the annotation on a EBON command
maps to the first line of the Java method comment. Likewise, the informal constraint “The time must
be non-negative.” is refined into an informal JML comment. As a reminder to the reader: there is a
formal semantics for all of these refinements (discussed below) and consistency is automatically maintained
between all of these artifacts.

Another example is seen in the realization of the getLogicalTime method. This method is a query
in the informal model (since it is in the query section), it is marked as a QUERY in the formal EBON
model, and it is realized as a pure method in the JML model.

Concurrency is topic that makes for more interesting semantics. Since the get logical time fea-
ture in the EBON formal model was annotated with a CONCURRENT tag, its realization in Java is a normal
method that is threadsafe. On the other hand, the GUARDED annotation on advance indicates that the
method must be synchronized in its realization.

Type refinement is also interesting. A set of built-in base types exist in EBON. Value types like
INTEGER and REAL are unsurprisingly mapped to mathematical integers and reals in JML (respectively).
But other mappings are more subtle. EBON includes a set of basic mathematical abstractions like SET,
SEQUENCE, and RELATION. Each of these is mapped to the appropriate JML model (e.g., org.jmlspecs.-
models.JMLSet), and thence to Java, usually via Java collections. The validity of data refinements is
maintained by EBON and JML’s refinement semantics—for example, the refinement from the VALUE type
to INTEGER in EBON, or the bigint model field to the long concrete field in JML.

Finally, note that refinement of formal specifications need not be syntactic equality when mapped across
syntaxes, but instead semantic equivalence. Note, for example, the difference between the formal invariant
in the EBON formal diagram and the JML formal specification to which it refines.

3.2 Structure

Structural refinement has its share of straightforward and subtle aspects as well. Annotations, like those
seen in the indexing block in Listing 3 and in the class Javadoc comment in Listing 4 are substructures of
the EBON and JML specification respectively. These substructures are maintained in structural refinement
between levels, in this case EBON and JML, and can be augmented, refined, replaced, or deleted as one
moves down the refinement chain. For example, the @title semantic property must match exactly across
refinement levels, whereas the @author property need not. Likewise, the class comment must match, but
only partially—the first sentence of the refinement (the Javadoc class comment) must be identical to the
contents of the about property.

Naming is another structural property. For example, the standard convention in EBON is to name
classes using capitalized underbar-separated words, much like the standard convention used to name con-
stants in Java programs, whereas the standard convention for Java class names is to capitalize the first
character of each word, with no separators between words. The substructures of identifiers are thus auto-
matically mapped in refinement, as see in the example: LOGICAL CLOCK refines to LogicalClock.
Likewise, there is support for refining EBON features to Java constants, fields, and methods (as appropri-
ate).

Feature ordering is a seemingly uninteresting structural property that sometimes has a non-trivial impact
on refinement. In particular, in some development groups the declaration order of method calls and fields is
tightly constrained and checked with tools like CheckStyle. If this is the case, the refinement relationship
between a Java class and, say, an EBON specification, must respect these constraints. For example, when
one adds a feature to a EBON formal chart, the automatic addition of the appropriate method at the Java
level must occur at exactly the right position in the source so as to respect local conventions.

Another obvious structural relationship maintained by refinement is between classes and features. Ob-
viously, if a Java class contains a method that may be used by clients, it must be captured in the refinement
up the chain (in the JML, EBON, etc.). What is less clear is what happens when visibility comes into play.

EBON has a notion of feature visibility. Each feature is either public, and visible to any client class, or
is restricted, and available only to a certain group of other classes. The semantics of feature restriction in
EBON are more rich than that available in Java, where one only has public, protected, package, and private
class and method visibility. Consequently, each of Java’s visibility levels is mapped to the appropriate
EBON selective export specification.

Note that the inverse refinement, from EBON to Java, is not total: some selective export specifications
in EBON do not naturally map to Java’s visibility constructs. This situation, that of a higher-level being
more expressive than a lower-level one occasionally happens and our current solution is to detect and flag
such situations as an error.

A similar situation exists with regards to naming. EBON, much like Eiffel, supports feature renaming
during inheritance—Java does not. Thus, any use of renaming in an EBON specification that relates to a
JML or Java refinements triggers an error.

3.3 Semantics and Tools

As one can see, there are subtleties in the interplay between refinements of inheritance and structures and
the preexisting tools that operate on artifacts at the various refinement levels. We must be careful to ensure
that all refinements respect tool semantics. For example, if a refinement of documentation from EBON to
Java contradicts the standard use of Javadoc, then the refinement is not very useful.

In the current EBON/JML/Java-centric system there are seven different kinds of tools that we must
respect. All of these tools are integrated into the Mobius Program Verification Environment (PVE), which
is discussed in more detail later in this paper.

1. Documentation tools (e.g., Javadoc and Doxygen) interpret semantic properties in the documentation
and usage categories.

2. Specification tools (e.g., the JML tool suite, ESC/Java2) interpret the semantic properties in the con-
tract category.

3. IDEs (like Eclipse and Emacs) interpret semantic properties in the process category.
4. Bug/feature trackers (we use Trac, GForge, and Bugzilla) understand some of the semantic properties

in the meta-info and process categories.
5. Configuration management and revision control tools (e.g., CVS and subversion) process semantic

properties in the meta-info category.
6. The Java compiler and some static checkers interpret Java annotations that are refinements of the

inheritance category of semantic properties.
7. And finally, static checkers (like CheckStyle, FindBugs, PMD, and ESC/Java2) interpret a mixed subset

of semantic properties across many categories.

By virtue of the manner in which we specify semantic properties’ semantics below, and coupled with
the precise way that we configure and use the aforementioned tools, it is guaranteed that tools’ behavior
does not contradict the automatic upkeep of refinements in our system.

4 Expressing Semantics

The meaning of semantic properties is expressed in a formalism called kind theory [8]. As kind theory is a
relatively new, very rich formal method unfamiliar to most readers, its full form is not used here. Instead,
the aspects of kind theory most relevant to this work are explained in terms familiar to most readers, with an
emphasis on capturing the important facets of the formalism. The curious reader will find the full details of
the original kind theoretic formalization of generic semantic properties in the aforementioned dissertation,
and a modernized full explanation of the concrete realization of semantic properties for EBON, JML, and
Java in a forthcoming technical report and an undergraduate student research thesis [9].

Kind theory lets one describe general purpose reusable assets. Software artifacts and mathematical
systems are two kinds of assets that are described, and about which we reason, using kind theory. In its
simplest form, kind theory lets one describe type-like structures (called kind) and explain their interre-
lationships. The relationships that one describes are structural, subtyping, equivalency, composition and
decomposition, realization, and refinement.

From a type theoretical point of view, kind theory permits one to describe multiple type systems and
their interrelationships. The theorems of kind theory support reasoning at the object and the kind level,
much like one can reason about types and typed objects in type theory.

A full description of kind theory and its use requires an entire dissertation [8]. For space reasons we
only give a flavor of the means by which the semantics of semantic properties is specified here.

(Parent Is-a) (Is-a Refl) (Is-a Trans) (Is-a Asym)
Γ ` K <p L

Γ ` K < L

Γ ` �
Γ ` K < K

Γ ` K < L Γ ` L < M

Γ ` K < M

Γ ` K < L Γ ` γ(⊥(K ≡ L)|)
Γ ` γ(⊥(L < K)|)

Figure 2: Example rules written in kind theory.

A few examples of kind theory subkinding rules to help the reader get comfortable with reading them
are found in Figure 2. The rule Parent Is-a states that, if the parent of kind K is the kind L (K <p L) then
the kind K is-a L (K < L). This is akin to subtyping, where L is the immediate supertype of K. Is-a Refl
states that every kind is a subkind of itself (subkinding is reflexive); Is-a Trans that subkinding is transitive.
Finally, Is-a Asym states that, if K < L and K and L are not equivalent (γ(⊥(K ≡ L)|)) then one can
prove that L is not a subkind ofK (γ(⊥(L < K)|)). This last rule hints at the fact that kind theory supports
reasoning about proof systems as well as proof artifacts, since proofs and evidence are first-order notions
in the theory.

The key foundational axiom of kind theory that supports this refinement-centric work is that properties
are preserved under interpretation. Interpretation is simply a (possibly computable) relation between kind,
and consequently, between objects that realize those kind. Thus, refinements between BON, JML, and
Java in this work are modeled as computational interpretations in kind theory. Such property-preserving
relations are described using commutative diagrams, as kind theory is a logic with a categorical feel.

Theorem 1 (FullInterp Part-of)

Γ, P ` U ⊂p V Γ, P ` V W

Γ ` U P

Γ, P ` U ⊂p V Γ, P ` V W

Γ ` P ⊂p W

U
⊂p - V

P

? ⊂p -

?

W

?

Figure 3: The Theorem Diagram for (FullInterp Part-of)

Consider the diagram in Figure 3. It captures the essential elements of the proof of the FullInterp Part-of
theorem, as seen in the two rules in Theorem 1.
Proof. Since V contains U , and fully interprets V to W , then this interpretation also acts upon U . Call
the object resulting from the full interpretation P . Since full interpretation is structure-preserving, and ⊂p

is a component of that structure, then necessarily P ⊂p W . �

What this theorem tells us is that substructures are preserved under full interpretations and, as refine-
ments from BON to JML, and JML to Java, are full interpretations, then substructure relationships in BON
are preserved under refinement into JML, etc.

(query) “Current time?”
⊂p- (BON informal class) LOGICAL CLOCK

(feature) my time: INTEGER

? ⊂p-

?

deferred BON class LOGICAL CLOCK

?

(pure method) long getLogicalTime()

? ⊂p -

?

Java interface LogicalClock

?

Figure 4: Full Interpretation of an Informal Query to a Formal (Pure) Feature

This property is made more clear if we replace this generic commutative diagram with a particular
instantiation for our running example. Consider Figure 4, which is an instantiation of this theorem when
applied to the single query of the running example.

Because the high-level design contains this query, (i.e., the BON class chart LOGICAL CLOCK contains
the query), then according to this theorem, the BON formal specification of the refinement of the class must
also contain this query. Moreover, all properties of the substructure (the query) at the less refined level (the
BON informal level) must be maintained by the more refined level (the BON formal level). In this case
this means that (i) the feature must be of non-VOID type (thus, it is a query), (ii) it must be pure (i.e., its
postcondition must not mention any frame conditions), and (iii) the documentation of the formal feature
must refine the documentation of the informal query (in this case, they are equivalent, but that’s specific to
this example).

5 Properties and their Classification

Thirty-five semantic properties have been identified and defined1 . All semantic properties are enumerated
in Table 1.

Due to space reasons, only a handful of the more interesting properties and their semantics that we
have used in a number of software engineering projects, large and small, over nearly the last decade are
discussed. Also, the following descriptions are written entirely from the point of view of a user of semantic
properties (i.e., a software developer), not a creator of new semantic properties (which requires some
knowledge of kind theory).

To derive our core set of semantic properties, the existing realizations that we have used in two lan-
guages for many years were abstracted and unified. First, the set of predefined Javadoc tags, the standard
Eiffel indexing clauses, and the set of basic formal specification constructs were identified and made self-
consistent (duplicates were removed, semantics were weakened across domains for the generalization, etc.).
The resulting set of unique properties are the core set of semantic property kinds.

These properties were then classified according to their general use and intent. The classifications are:
meta-information, process, contracts, concurrency, usage, versioning, inheritance, documentation, depen-
dencies, and miscellaneous. This classification is represented using kind theory’s inheritance operators,

1 The original specification of these properties was defined in the Caltech Infospheres Java Coding Standard
(http://www.infospheres.caltech.edu/). That standard has since been refined and broadened. The most recent ver-
sion is available via the KindSoftware Research Group’s website (http://kind.ucd.ie/).

http://www.infospheres.caltech.edu/
http://kind.ucd.ie/

Meta-information
author
bon
bug

copyright
description
history
license
title

Contracts
ensures
generates
invariant
modifies
requires

Versioning
deprecated
since
version

Dependencies
references
use

Inheritance
hides

overrides

Documentation
design

equivalent
example
see

Concurrency
concurrency

Usage
exception
param
return

Process
idea
review
todo

Miscellaneous
guard

space-complexity
time-complexity

values

Table 1: The full set of semantic properties.

e.g.,:

METAINFO <p SEMANTICPROPERTYCLASSIFIER AUTHOR <p METAINFO
ENSURES <p CONTRACTS DEPRECATED <p VERSIONING

Many of these semantic properties are used solely for documentation purposes. For example, the
title property documents the title of the project with which a file is associated; the description
property provides a brief summary of the contents of a file. These kinds of properties are called informal
semantic properties.

Another set of properties are used for specifying non-programmatic semantics. By “non-programmatic”
we mean that the properties have semantics, but they are not, or cannot, be expressed in program code. For
example, labelling a construct with a copyright or license property specifies some legal semantics.
Tagging a method with a bug property specifies that the method has some erroneous behavior that is
described in detail in an associated bug report. We call these properties semi-formal because they have a
semantics, but outside of the domain of software (at least for the moment).

Finally, the remaining properties specify structure that is programmatically testable, checkable, or ver-
ifiable. Basic examples of such properties are requires and ensures tags for preconditions and post-
conditions, modifies tags for specifying frame conditions, and the concurrency and generates
tags for expressing concurrency semantics. These properties are called formal because they are realized by
a formal semantics.

The KindSoftware Research Group coding standard summarizes the current set of semantic properties
and is regularly updated to reflect newly identified properties [10]. Each property has a syntax, a correct
usage domain, and a natural language summary. As mentioned before, the formalization of semantic prop-
erties is found elsewhere [8].

5.1 Context

Each property has a legal scope of use, called its context. Contexts are defined in a coarse, language-
independent fashion using inclusion operators in kind theory. Contexts are comprised of files, modules,

features, and variables. Contexts are structured hierarchically; the scope of a property encompasses the
context for which it is defined, as well as all sub-contexts.

Files are exactly that: data files in which program code resides. The scope of a file encompasses every-
thing contained in that file.

A module is some large-scale program unit. Modules are typically realized by an explicit module- or
class-like structure. Examples of modules are classes in object-oriented systems, modules in languages of
the Modula and ML families, packages in the Ada lineage, etc. Other words and structures typically bound
to modules include units, protocols, interfaces, etc.

Features are the entry point for computation. Features are often named, have parameters, and return
values. Functions and procedures in structured languages are features, as are methods in object-oriented
languages, and functions in functional systems.

Finally, variables are program variables, attributes, constants, enumerations, etc. Because few lan-
guages enforce any access principles for variables, their semantics vary considerably.

Each property listed in Table 1 has a legal context [10]. The context All means that the property may
be used at the file, module, feature, or variable level. Additional contexts can be defined, supporting new
programming language constructs that need structured documentation with properties. For example, now
that JSR 305 (Annotations for Software Defect Detection) and JSR 308 (Type Annotations) have been
finalized the introduction of new contexts may be necessary.

For each concrete language there is a mapping for these contexts/scoping levels. For example, in Java
the valid scoping levels are source files, classes/interfaces, methods and variables. Some of the kind theory
rules that specify context for a Java method declaration and its documentation are as follows:

JAVADOCMETHODDESCRIPTION ⊃ RETURN ⊕ PARAMLIST ⊕ EXCEPTIONSET

JAVAMETHODSIGNATURE ⊃ RETURNTYPE ⊕METHODNAME ⊕ FORMALPARAMETERLIST ⊕ THROWSCLAUSE

JAVAMETHODDECLARATION ⊃ JAVAMETHODSIGNATURE ⊕ ...
JAVAMETHODSIGNATURE JAVAMETHODDESCRIPTION

These rules formally define the structure of a Javadoc method description (i.e., the fact that it can
contain Javadoc tags like @return and @param) and the type signature of a Java method. The first line is
read, “A Javadoc method description is made up of the composition of a return, param list, and exception
set.” The third line states that a Java method declaration must contain a method signature, and perhaps more
(the elision is not part of kind theory, we are simply ignoring the rest of the formula).

The final line, which is the most interesting one, states that a refinement relationship exists between
the Javadoc specification of a method and its declaration. It is read, “One can interpret any Java method
signature into a Java method description without any loss of information.” This refinement relationship
captures two things: (1) a Java method declaration must have a Javadoc method description, and, more
specifically, (2) how each substructure within a method declaration must be documented in Javadoc. This
first properly is generally enforced by several basic tools we use in our software development process (e.g.,
Javadoc and Eclipse). The second, more specific, property is enforced by our customization of tools like
PMD and CheckStyle.

Other structural rules of this form are not enforced by customized versions of third-party tools, but
instead by our own, as discussed below.

5.2 Visibility

Visibility is a key notion discussed earlier. In languages that have a notion of visibility, a property’s visibility
is equivalent to the visibility of the context in which it is used, augmented by domain-specific visibility
options expressed in kind theory.

Typical basic notions of visibility include public, private, children (for systems with inheritance), and
module (e.g., Java’s package visibility). More complex notions of visibility are exhibited by C++’s notion
of friend and Eiffel’s class-based feature scoping.

Explicit visibilities for semantic properties are also used to refine the notion of specification visibility
for organizational, social, and formal reasons. For example, a subgroup of a large development team might
choose to expose some documentation for, and specification of, their work only to specific other groups for
the purposes of testing, or for political or legal reasons.

On the social front, new members of a team might not have yet learned specific tools or formalisms used
in semantic properties, so using visibility to hide those properties will help avoid information-overload.

Lastly, a formal specification, especially when viewed in conjunction with standard test strategies (e.g.,
whitebox, greybox, blackbox, unit testing, scenario-based testing), has distinct levels of visibility. For ex-
ample, testing the postcondition of a private feature is only reasonable and permissible if the testing agent
is responsible for that private feature.

5.3 Inheritance
Semantic properties also have a well-defined notion of property inheritance. Once again, in order to avoid
new and complicated extra-language semantics on the software engineer, property inheritance semantics
match those of the source language in which the properties are used. Our earlier discussion of basic com-
ments for Java methods (a feature property context) is an example of such property inheritance.

These kinds of inheritance come in two basic forms: replacement and augmentation.
The replacement form of inheritance means that the parent property is completely replaced by the child

property. An example of such semantics is feature overriding in Java and the associated documentation
semantics thereof.

Augmentation, on the other hand, means that the child’s properties are actually a composition of all its
parents’ properties. These kinds of composition come in several forms. The most familiar is the stan-
dard substitution principle-based type semantics [11] in many object-oriented systems, and the Hoare
logic/Dijkstra calculus-based semantics of contract refinement [12].

These formal notions are expressible using kind theory because it is embedded in a logical framework.
For example, automatically reasoning about the legitimacy of specification refinement is supported, much
like that seen in Findler and Felleisen work [13].

6 Tool Support

Semantic properties have been used for the past decade in academic and corporate settings. While explicit
(and utilized) coding standards, positive feedback via tools and peers, course grades and monetary rewards
go a long way toward raising the bar for documentation and specification quality, from our experience these
social aspects are simply not enough. Process does help—regular code reviews and pair programming in
particular—but tool support is critical to maintaining quality specification coverage, completeness, and
consistency.

Templates were the first step taken. Raw documentation and code templates in programming environ-
ments, ranging from vi to emacs to Eclipse, are used. But templates only help prime the process, they do
not help maintain the content.

Syntax highlighting as well as code and comment completion also helps. Both aid in programmer
comprehension and efficiency. Advanced development environments such as Eclipse and Emacs support
these features.

Likewise, documentation lint checkers (programs that statically check for the use of improper idioms
in a language; e.g., lint, javadoc, “gcc -Wall,” or CheckStyle), particularly those embedded in
development environments and documentation generators are also useful. Source text highlighting is an
extremely weak form of lint-checking. The error reports issued by Javadoc, CheckStyle, and its siblings
are a stronger form of lint-checking and are quite useful for documentation coverage analysis, especially
when a part of the regular build process. Finally, scripts integrated into a revision control system provide a
“quality firewall” to a source code repository in much the same fashion.

But these simple tools are not enough to ensure consistency between artifacts at different refinement
levels, nor do they support the automatic updating of artifacts as a system’s design, specification, or imple-
mentation evolves.

6.1 Checking and Maintaining Consistency
One of the most important parts of tool support for semantic properties is the automation of checking
for consistency between abstraction levels. Discrepancies between related artifacts should be detected and
presented in a cohesive manner along with other standard errors.

http://checkstyle.sourceforge.net/

Ongoing research here at UCD focuses on developing the detailed formal theory for automatic consis-
tency checking over multiple refinement levels, with an implementation specifically targeting EBON, JML
and Java. We target these languages for a variety of reasons, including local expertise. As seen earlier, the
theory itself is applicable to any set of languages for which well-defined refinement relations are defined.

The technique under development supports the definition of all possible relations between two refine-
ment levels, as well as an ordering on these. A consistency check uses automatic deduction of relations
(choosing from the set of all possible relations), as well as user-defined relations to determine if artifacts at
different refinement levels are consistent.

Part of this work has been the development of the BONc tool2, a parser, typechecker and documentation
generator for BON. It is open source, and available as a commandline tool or as an Eclipse plugin. Our
consistency checker is being built on top of BONc and OpenJML, which is, in turn, built atop of the
OpenJDK.

To help illustrate the aims of the tool support, consider the following example. A developer is imple-
menting, in Java, a class for which an EBON formal model also exists. A sufficiently advanced consistency
checker would detect that there is a feature in the class’s formal EBON model for which there is no re-
finement to a Java method. The issue is flagged to the developer inside her development environment in
a manner consistent with the presentation of other errors (compilation, etc.). The developer then chooses
to automatically fix the issue from a set of suggested fixes—for instance, they might choose to automat-
ically insert a method skeleton with the appropriate signature (calculated from the EBON types and the
knowledge of the existing refinement relations).

6.2 Development Environments

As mentioned earlier, a verification-centric development environment, known as the Mobius Program Ver-
ification Environment (PVE), has also been built to support design, development, and formal verification
using semantic properties.

The PVE is an extension to the powerful Eclipse Platform. It takes advantage of several pre-existing
development tools and plugins, including PMD, FindBugs, CheckStyle, the JML tool suite, ESC/Java2,
and BONc. In the near future our consistency checker will also be integrated.

7 Conclusion

Documentation reuse is most often discussed in the literate programming [14] and hypertext domains [15].
Little research exists for formalizing the semantics of semi-structured documentation. Some work in for-
mal concept analysis and related formalisms [16,17] has started down this path, but with extremely loose
semantics and little-to-no tool support.

Research by Wendorff [18,19] bears resemblance to this work both in its nature (that of concept for-
mation and resolution) and theoretic infrastructure (that of category theory, which relates to kind theory).
Development with semantic properties is differentiated by its broader scope, its more expressive formalism,
and its realization in tools. Additionally, the user-centric nature of kind theory (not discussed in this article)
makes for exposing the formalism to the typical software engineer a straightforward practice.

7.1 Future Work

Our work on the Mobius PVE continues. A graphical modeling environment for EBON is in the works,
linking BONc to the Eclipse Graphical Modeling Framework.

Extending JML and other model-based languages like Event-B with semantic properties would follow
the same course used for EBON. Because semantic properties are already integrated with Java, and given
the existing tool support for JML, inter-domain interpretations will preserve a vast amount of information
about JML-specified Java systems in Event-B.

2 Available from http://kind.ucd.ie/products/opensource/BONc/

http://kind.ucd.ie/products/opensource/BONc/
http://mobius.ucd.ie/
http://mobius.ucd.ie/
http://kind.ucd.ie/products/opensource/BONc/

8 Acknowledgements

This work was initiated under the support of ONR grant JJH1.MURI-1-CORNELL.MURI (via Cornell
University) “Digital Libraries: Building Interactive Digital Libraries of Formal Algorithmic Knowledge”
and AFOSR grant JCD.61404-1-AFOSR.614040 “High-Confidence Reconfigurable Distributed Control.”
Recently, the two authors have been supported by several other grants. This work was funded in part by
the Information Society Technologies programme of the European Commission, Future and Emerging
Technologies under the IST-2005-015905 MOBIUS project. This article reflects only the author’s views
and the Community is not liable for any use that may be made of the information contained therein. This
work is partially supported by Science Foundation Ireland under grant number 03/CE2/I303-1, “LERO:
the Irish Software Engineering Research Centre” and by an EMBARK Scholarship from the Irish Research
Council in Science, Engineering and Technology.

References

1. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIGSOFT Softw. Eng. Notes 17(4)
(1992) 40–52

2. Knuth, D.E.: Literate Programming. Number 27 in CSLI Lecture Notes. Center for the Study of Language and
Information (1992)

3. Knuth, D.E., Levy, S.: The CWEB System of Structured Documentation. third edn. Addison–Wesley Publishing
Company (2001)

4. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced specification and verification with
JML and ESC/Java2. In: Proceedings of the International Symposium on Formal Methods for Components and
Objects (FMCO). Volume 4111 of Lecture Notes in Computer Science., Springer-Verlag (2006) 342–363

5. Waldén, K., Nerson, J.M.: Seamless Object-Oriented Software Architecture - Analysis and Design of Reliable
Systems. Prentice–Hall, Inc. (1995)

6. Kiniry, J.R., Zimmerman, D.M.: Secret ninja formal methods. In: Proceedings of the Fifteenth International
Symposium on Formal Methods (FM). (2008) In press.

7. Janota, M., Kiniry, J.: Reasoning about feature models in higher-order logic. In Kellenberger, P., ed.: Proceedings
of the 11th International Software Product Line Conference, SPLC ’07, IEEE Computer Society (2007)

8. Kiniry, J.R.: Kind Theory. PhD thesis, Department of Computer Science, California Institute of Technology
(2002)

9. Kiniry, J., Fairmichael, F., Darulova, E.: Beetlz - a BON software model consistency checker for Eclipse. Technical
report, KindSoftware Research Group, University College Dublin (2009)

10. Kiniry, J.R.: The KindSoftware coding standard. Technical report, KindSoftware Research Group, UCD (2005)
Available via http://kind.ucd.ie/.

11. Liskov, B., Wing, J.M.: Specifications and their use in defining subtypes. In: Proceedings of OOPSLA’93. (1993)
16–28

12. Meyer, B.: Applying design by contract. IEEE Computer 25(10) (1992) 40–51
13. Findler, R., Felleisen, M.: Contract soundness for object-oriented languages. In: Proceedings of Sixteenth Inter-

national Conference Object-Oriented Programming, Systems, Languages, and Applications. (2001)
14. Childs, B., Sametinger, J.: Literate programming and documentation reuse. In: Fourth International Conference

on Software Reuse, IEEE Computer Society (1996) 205–214
15. Fischer, G., McCall, R., Morch, A.: JANUS: Integrating hypertext with a knowledge-based design environment.

SIGCHI Bulletin (1989) 105–117
16. Simos, M., Anthony, J.: Weaving the model web: A multi-modeling approach to concepts and features in domain

engineering. In Devanbu, P., Poulin, J., eds.: Fifth International Conference on Software Reuse, IEEE Computer
Society (1998)

17. Wille, R.: Concept lattices and conceptual knowledge systems. Computers and Mathematics with Applications
23(6-9) (1992) 493–515

18. Wendorff, P.: Linking concepts to identifiers in information systems engineering. In Sarkar, S., Narasimhan, S.,
eds.: Proceedings of the Ninth Annual Workshop on Information Technologies and Systems. (1999) 51–56

19. Wendorff, P.: A formal approach to the assessment and improvement of terminological models used in information
systems engineering. Software Engineering Notes 26(5) (2001) 83–87

http://kind.ucd.ie/

